The Use of Hydrogen Peroxide for Propulsion and Power

AIAA-99-2880

M. Ventura and P. Mullens

General Kinetics, LLC Aliso Viejo, CA

Overview

- General Description
- Uses of Hydrogen Peroxide
- Important Features for Applications
- Submarine Propulsion
- Torpedo Propulsion
- Rocket Assist Take-Off
- Reaction Control Systems
- Turbo-Pump Gas Generators
- Bi-Propellant Rocket Engines
- Vacuum Aspirators
- Other Rocket on Rotor, Flying Belts, etc...
- Conclusions

6/19/99

General Description

 Used in numerous applications as propellant and for power over last 60 years

• Review of prior capabilities and uses helps define current applicability

High density liquid oxidizer

"Non-toxic"

Mono-propellant

 Large commercial usage, propellant usage is small

 Typically used with silver wire cloth catalyst

Important Features for Use

- · Performance as monopropellant
- Performance as liquid oxidizer
- High density
- Storable propellant
- Non-toxic
- Non-reactive with atmosphere
- High oxidizer to fuel ratio
- Low vapor pressure
- High specific heat
- Water referee fluid
- Integrated propulsion and power
- Compatible with various pressurants

Submarine & Torpedo Propulsion

- First identified by Germany as a submarine propellant
- Very quickly successfully built and operated a 400 hp turbine with liquid injection of catalyst
- Germany build torpedoes in parallel, UK and US follow after WWII
- Remarkable success considering the adverse environment, and very new technology of both submarines and H2O2

Rocket Assist Devices

- Walter develops "cold" and "hot" ATO
 - "Cold" units use liquid injection of permanganate salts
 - "Hot" units burn fuel with oxygen
- UK improves Walter ATO
- UK evolves technology into rocket engines

Reaction Control Systems

- H2O2 is the first viable monopropellant
- Dominates early RCS systems
 - X-1, X-15, Centaur,
 Mercury, Little Joe
- Most systems use 90%
- Displaced in the 1960's with higher performance of N2H4
- New systems using it in applications where N2H4 is undesirable
 - LLNL micro-sats
 - Future-X

Specific Impulse of H2O2 at Various Concentrations

Turbo-Pump Gas Generators

- Most influential use to US was V-2 GG
- Von Braun preferred H2O2 for TP GG's
- Many applications: X-1, X-15, submarines, Jupiter, Redstone, Viking, Centaur boost pumps
- Gas temperature matches well for turbines
- Early systems used liquid injection, later US systems used pellet catalyst

Oxidizer for Bi-Propellant Rockets

- Three major rocket engines used H2O2
 - UK Gamma 201/301 Black
 Knight & Prince
 - US Rocketdyne AR family
 - US Reaction Motors LR-40
- Engines never developed past 1960's
- UK reaches highest level of development
- Potential shown by AR2 and LR-40 for impressive applications

Black Knight - Gamma Engines

- Gamma 201 and 301 pump fed regenerative robust rocket engine
- Black Knight well developed
- Black Prince was Thor-like vehicle, not developed
- Black Arrow built as compromise
- Black Arrow deploys payload to space

US Superperformance Engine

- Two engines competed for aircraft assist mission
- AF supports RD with AR
- Navy support RMI with LR-40
- LR-40 does not reach production
- AR2-3 used for flight tests
- Engine requirement ends, neither engine is used again, until present

Current Bi-Propellant Usage

- OSC USFE
 - Pressure fed, 10,000 lbf, H2O2-kerosene
 - Development engine in test
- Future-X
 - Main engine to be RD AR2-3
 - Engine available and to be in test soon
- Beal Aerospace
 - Three stage platform, all pressure fed ablative
 - Very large, Atlas like vehicle
 - Anticipated near term deployment (~2001)
- NAWC
 - Research with hypergolic fuel formulations
 - Some testing in work

Vacuum Aspiration

- Used significantly in past
 - Thiokol Hyprox systems
- Current usage is most mature application of H2O2
 - THEL and ABL
 - Systems well into development
 - Most likely will be "first" new H2O2 propulsion/power system on-line
 - Used for vacuum aspiration of laser

Other Applications

- Rocket on Rotor
- Rocket belts
- Man-Heater
- Decontamination of N2H4 spills
- Mine sweeping by detonation with N2H4
- · Oil well pressurization
- · Black Horse
- Hybrids

6/19/99

Lessons Learned

- In highly performance constrained applications it has been displaced by N2H4, LO2, and NTO
- Used most often as monopropellant for RCS or TP GG
- Used many times in close proximity to humans
- Selected in past for same characteristics that are desirable today
- Used in integrated fluid systems applications

Conclusions

- Potentially good future for alternate to NTO and N2H4
- Better suited for systems with human interaction
- Better suited for systems that do not want cryogenic complexities
- Changes in the way "performance" is evaluated (non-cold war environment) may alter prior trade decisions