CAPABILITIES OF HYDROGEN PEROXIDE CATALYST BEDS

7/18/00
Overview

- Hydrogen Peroxide as Monopropellant
- History of Decomposition
- Proven Methods of Decomposition
 - Liquid-Liquid
 - Pellet Catalyst Beds
 - Screen Catalyst Beds
- Performance of Screen Catalyst Beds
- Conclusions
Hydrogen Peroxide as Monopropellant

- Monopropellants Decomposes and Release Energy
 - Presence of Catalyst
 - Presence of Thermal Energy
- Several Liquids are Monopropellants
 - Only a few Have Found Rocket Applications
 - Hydrazine and Hydrogen Peroxide Dominate Historical Use
 - Higher Energy Propellants are Considered to Unstable
- Specific Impulse of 90% H2O2 ~ 25% Below Hydrazine
- Density Impulse of 90% H2O2 ~ 6% Higher Than Hydrazine
- 90% H2O2 Does Not Require Sealed Handling Suits Like Hydrazine
- H2O2 Non-Toxic Decomposition Products
 - Oxygen and Water
History of Decomposition

• First Found Rocket Use in Germany WWII – 80 to 85% H2O2
 – V-1 RATO, V-2 Turbopumps, ME163
 – Submarines (with Kerosene)
• UK After WWII to Mid 1960’s
 – Gamma Engine Main Propulsion, RATO
• US After WWII to Late 1970’s
 – X-1, X-15, Scout
• Decline in Use Replaced by Hydrazine late 1960’s
 – Performance Driven
• US 1990’s Renewed Interest in Niche Markets
 – Handling, Green, Cost Driven Systems
 – Chemical Lasers, X-37 Main Propulsion
Proven Methods of Decomposition

• Many Methods Exist
 – Desire Robust, Simple, Long Life
 – All Fielded Systems Use Catalyst For Decomposition
 – Three Primary Methods
• Liquid – Liquid
 – Germany WWII
• Pellet Catalyst Beds
 – Germany WWII
 – UK - Short Experimental Period After WWII
 – US - Redstone, Jupiter
• Screen Catalyst Beds
 – UK - Until Termination of Black Arrow Program (1973)
 – US – The Method of Choice
Liquid-Liquid Systems

- Two Liquid System
 - One Liquid is Hydrogen Peroxide
 - Second Liquid is Catalyst Doped
 - Liquids Co-injected in Chamber Where Decomposition of H2O2 Occurs
- First H2O2 Decomposition System to be Fielded
 - Germany WWII
 - Typical Catalyst is Manganate Family (Ca, K, Na)
 - Example V-2 Turbo Pumps (Water – Permanganate / H2O2)
Liquid-Liquid Systems
Liquid-Liquid Systems

• Advantages
 – Injection Technology Similar to Bi-Propellant Systems
 – Catalyst Less Contamination Sensitive

• Disadvantages
 – Requires Second Fluid System
 – Catalyst is Expelled with little Specific Impulse Value
 – Exhaust is Diluted by Catalyst Carrier Liquid
 – Catalyst Must Be Soluble

• Upgrade System Uses Fuel As Carrier Liquid
 – ME163 – Hydrazine Hydrate/Methanol
Pellet Catalyst Beds

- Catalyst is a Solid in a Pressure Vessel
 - Liquid H2O2 Enters, Exists Decomposed
 - Catalyst Placed on Substrate by Dip and Bake Method
 - Vessel filled with Pieces of Catalyst/Substrate 0.5” – 2” Longest Dim
- First Used in Germany – late WWII
 - Typical Catalyst Permanganate
 - Example German Submarines
Pellet Catalyst Beds
Pellet Catalyst Beds

- **Advantages**
 - Elimination of Second Fluid System
 - Reduced Mass of Catalyst Required
 - Catalyst Does Not need to be soluble (Prefer Not – MnO2)

- **Disadvantages**
 - Life on the Order of Minutes
 - Silting, Breakup of Substrate, Catalyst
 - Increased Concentration of H2O2 Reduces Life
 - Catalyst Must be Held in Pressure Vessel
Screen Catalyst Beds

- Catalyst is Solid in Pressure Vessel
 - Liquid H2O2 Enters, Exists Decomposed
 - Catalyst is in the form of Wire Mesh
 - Plated on Catalyst or Pure Catalyst
- First Used by UK, US After WWII
 - Favored Catalyst is Silver
 - Example RCS Thruster
Screen Catalyst Beds

• Present Day Catalyst Bed
Screen Catalyst Beds

- Advantages
 - Catalyst More Robust
 - Longer Life on the Order of Hours
 - Smaller Device than Pellet Beds
- Disadvantages
 - Poisoning by Fluid Impurities
 - Silver Limited to ~ 92% H2O2
 - Catalyst Must be Held in Pressure Vessel
Performance of Screen Catalyst Beds

- Several Important Parameters of Performance
 - Life, Mass Flux, Pressure Drop, Mass
- Most Influential is Mass Flux
 - Upper Limit of Operation Not Necessarily Driven By Catalyst
 - Pressure Drop and Life Requirements are the Extremes
 - Typical Limits of Flux 0.05 to 0.4 lbm/(in^2-s)
 - Typical Pressure Drops from 20 to 200 psid
Performance of Screen Catalyst Beds
Conclusions

• Hydrogen Peroxide Monopropellant Devices Have Long History
 – Rocket Devices for Over 50 years
• Evolution of Methods of Decomposition Since WWII – Germany
 – All Methods Based Upon Use of Catalyst
 – Liquid – Liquid (WWII – Germany)
 – Pellet Beds (WWII – Germany & Short Period After WWII – UK, US)
 – Screen Beds (1950’s to Present)
• Screen Beds Have Stood the Test of Time
 – Life of Hours
 – Mass Flux Range 0.05 to 0.4 Lbm/(in^2-s)
 – Pressure Drops 20 to 200 psid